If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2=40
We move all terms to the left:
1x^2-(40)=0
We add all the numbers together, and all the variables
x^2-40=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| -(e-9)=5 | | 4x+10-2x=18 | | 6(e+2)=-18 | | 3(3e+7)=66 | | p−12=21 | | 2(2e+6)=20 | | 21=p−12 | | 3x+23=80 | | .3n=310 | | 5(e-6)=30 | | (e+5)*9=63 | | (e-9)*4=32 | | 6d—5=20 | | (e+9)*4=32 | | (√x-1)²=8-√28 | | m+7=11. | | 2(11x-3)=5x-9 | | y+2y-3=57 | | w=2=6 | | y-(y*11.5/100)=7005.5 | | 12=k-10 | | 10+3z=40 | | 100=b+2 | | 7(x-1)=76 | | 9n=3+10 | | 4y-3y+15-3=87 | | 35x=187 | | -2+7z+4z-10=43 | | (X^2+2)^2+8X^2=6x(x^2+2) | | (4x+112)-4x=(9x+72)-4x | | -1=8-9y | | 45/x=150 |